skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muñoz, Martha_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a “stages” model, with some traits saturating early in a lineage’s history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island’s adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation. 
    more » « less
  2. Synopsis Terrestrial environments pose many challenges to organisms, but perhaps one of the greatest is the need to breathe while maintaining water balance. Breathing air requires thin, moist respiratory surfaces, and thus the conditions necessary for gas exchange are also responsible for high rates of water loss that lead to desiccation. Across the diversity of terrestrial life, water loss acts as a universal cost of gas exchange and thus imposes limits on respiration. Amphibians are known for being vulnerable to rapid desiccation, in part because they rely on thin, permeable skin for cutaneous respiration. Yet, we have a limited understanding of the relationship between water loss and gas exchange within and among amphibian species. In this study, we evaluated the hydric costs of respiration in amphibians using the transpiration ratio, which is defined as the ratio of water loss (mol H2O d−1) to gas uptake (mol O2 d−1). A high ratio suggests greater hydric costs relative to the amount of gas uptake. We compared the transpiration ratio of amphibians with that of other terrestrial organisms to determine whether amphibians had greater hydric costs of gas uptake relative to plants, insects, birds, and mammals. We also evaluated the effects of temperature, humidity, and body mass on the transpiration ratio both within and among amphibian species. We found that hydric costs of respiration in amphibians were two to four orders of magnitude higher than the hydric costs of plants, insects, birds, and mammals. We also discovered that larger amphibians had lower hydric costs than smaller amphibians, at both the species- and individual-level. Amphibians also reduced the hydric costs of respiration at warm temperatures, potentially reflecting adaptive strategies to avoid dehydration while also meeting the demands of higher metabolic rates. Our results suggest that cutaneous respiration is an inefficient mode of respiration that produces the highest hydric costs of respiration yet to be measured in terrestrial plants and animals. Yet, amphibians largely avoid these costs by selecting aquatic or moist environments, which may facilitate more independent evolution of water loss and gas exchange. 
    more » « less
  3. Synopsis As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity and their environmental predictors in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the “cybotoid” anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits, only cold tolerance is correlated with environmental temperature, and none of our climate variables are correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures, such that more heat-tolerant lizards are also more desiccation-tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology. 
    more » « less
  4. Abstract In snakes, the skin serves for protection, camouflage, visual signaling, locomotion, and its ability to stretch facilitates large prey ingestion. The flying snakes of the genusChrysopeleaare capable of jumping and gliding through the air, requiring additional functional demands: its skin must accommodate stretch in multiple directions during gliding and, perhaps more importantly, during high‐speed, direct‐impact landing. Is the skin of flying snakes specialized for gliding? Here, we characterized the material properties of the skin ofChrysopelea ornataand compared them with two nongliding species of colubrid snakes,Thamnophis sirtalisandPantherophis guttatus, as well as with previously published values. The skin was examined using uniaxial tensile testing to measure stresses, and digital image correlation methods to determine strains, yielding metrics of strength, elastic modulus, strain energy, and extensibility. To test for loading orientation effects, specimens were tested from three orientations relative to the snake's long axis: lateral, circumferential, and ventral. Specimens were taken from two regions of the body, pre‐ and pos‐tpyloric, to test for regional effects related to the ingestion of large prey. In comparison withT. sirtalisandP. guttatus,C. ornataexhibited higher post‐pyloric and lower pre‐pyloric extensibility in circumferential specimens. However, overall there were few differences in skin material properties ofC. ornatacompared to other species, both within and across studies, suggesting that the skin of flying snakes is not specialized for gliding locomotion. Surprisingly, circumferential specimens demonstrated lower strength and extensibility in pre‐pyloric skin, suggesting less regional specialization related to large prey. 
    more » « less